
1

An Empirical Comparison of Combinations of

Evolutionary Algorithms and Neural Networks for

Classification Problems

Erick Cantú-Paz and Chandrika Kamath

Abstract

There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification problems. EAs

have been used to train the networks, design their architecture, and select feature subsets. However, most of these combinations have been

tested on only a few data sets and many comparisons are done inappropriately measuring the performance on training data or without using

proper statistical tests to support the conclusions. This paper presents a comprehensive empirical evaluation of eight combinations of EAs

and NNs on 15 public-domain and artificial data sets. Our objective is to identify the methods that consistently produce accurate classifiers

that generalize well. In most cases, the combinations of EAs and NNs perform equally well on the data sets we tried and were not more

accurate than hand-designed neural networks trained with simple backpropagation.

Keywords

classification, evolutionary algorithms, machine learning, network design, training algorithms, feature selection

I. Introduction

There are numerous combinations of neural networks (NNs) and evolutionary algorithms (EAs) used in classification

problems. EAs have been used to train the networks, design their architecture, and select feature subsets [1], [2], [3].

Most of these combinations have been tested on few data sets and only a handful of studies have compared different

combinations of EAs and NNs on the same domain [4], [5], [6]. Moreover, many comparisons are done inappropriately

using the performance on training data or without using proper statistical tests to support the conclusions.

This paper presents a comprehensive empirical evaluation of eight combinations of EAs and NNs on 16 public-domain

and artificial data sets. Our objective is to identify the methods that consistently produce accurate classifiers that

generalize well. To perform the comparisons, we use a recently-developed statistical test that is well accepted in machine

learning for comparing classifiers.

We cannot test the myriad combinations of EAs and NNs that have been proposed, but we chose combinations that

are representative of the main types. First, we experimented with EAs to train neural networks. We used different EAs

E. Cantú-Paz and C. Kamath are with the Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 7000 East
Avenue, L-561, Livermore, CA. Email: cantupaz@acm.org and kamath2@llnl.gov



2

with binary and real encodings. Since it is well known that EAs can benefit from combining them with local optimizers,

we hybridized the EAs with backpropagation and experimented varying the number of epochs. We also explored the

possibility of altering the weights encoded in the chromosomes of EA individuals using the results of backpropagation

(Lamarckian evolution) as well as exploiting the Baldwin effect, where the improved results are used in the fitness

calculations, but the chromosomes remain unaltered.

We also experimented with EAs to select feature subsets and with four methods to design the architecture of the NNs

with EAs. To design the networks we used direct encodings that specify each connection among neurons to build and

prune the networks, as well as indirect encodings that develop the structure of the networks from information contained

in the chromosomes.

In a previous study, we compared six of the algorithms used in the present paper on real-life astronomical data [7].

The algorithms we tried performed equally well on that data with one notable exception: Using genetic algorithms

(GAs) to select feature subsets yielded the most accurate classifiers. Those results motivated us to explore EA and

NN combinations in more detail to verify if our conclusions applied to other data sets. Somewhat surprisingly, and in

contrast to other studies, the experiments in this paper show that the combinations of EAs and NNs performed equally

well in most cases. Moreover, the EA and NN combinations were not more accurate than networks trained with simple

backpropagation.

The following section reviews several combinations of EAs and NNs that have appeared previously in the literature.

Section III describes the data sets, algorithms, and the statistical test used to compare the experimental results, which

are presented in section IV. Section V concludes the paper with our observations and plans for future work.

II. Background

Evolutionary algorithms and neural networks have been combined in two major ways. First, EAs have been used to

train or to aid in the training of NNs. In particular, EAs have been used to search for the weights of the network, or

to reduce the size of the training set by selecting the most relevant features. The second major type of collaboration is

to use EAs to design the structure of the network. The structure largely determines the efficiency of the network and

the classes of problems that it can solve. It is well known that to solve non-linearly separable problems, the network

must have at least one hidden layer between the inputs and outputs; but determining the number and the size of the

hidden layers is mostly a matter of trial and error. EAs have been used to search for these parameters, as well as for

the pattern of connections and for developmental instructions to generate a network. The interested reader may consult

more extensive reviews [1], [8], [2], [3].

This section first reviews some basic concepts from evolutionary algorithms. Then, we describe how to use EAs to

train NNs, to select features, and to determine the topology of the network.



3

A. Evolutionary Algorithms

Evolutionary algorithms are randomized search procedures that mimic the process of natural evolution to solve

optimization problems. There are different types of evolutionary algorithms, such as genetic algorithms [9], evolution

strategies, evolutionary programming, and genetic programming. Despite some differences, EAs share many properties.

EAs operate on a population of individuals that represent possible solutions to a problem. The representation of a

solution is defined by the user and may be as simple as a string of zeroes and ones or as complex as a computer program.

The initial population may be created entirely at random or using some domain knowledge (in the form of previously

known solutions, for example). The algorithm evaluates the individuals to determine how well they solve the problem at

hand with an objective function, which is unique to each problem and must be supplied by the user. The individuals with

better performance are selected into a mating pool to serve as parents of the next generation of individuals. EAs create

new individuals using simple randomized operators that are inspired by sexual recombination (crossover) and mutation

in natural organisms. The new solutions are evaluated, and the cycle of selection and creation of new individuals is

repeated until a satisfactory solution is found or a predetermined time limit elapses.

There are numerous methods to select promising solutions into the mating pool. This paper uses binary (pairwise)

tournaments, which is one of the simplest selection methods. This selection method randomly selects two individuals

without replacement from the current population, and the most fit individual (according to the objective function) is

incorporated into the mating pool. The random pairing of individuals is repeated twice to obtain a mating pool of the

same size as the original population.

Most of the experiments of the present study use binary-encoded GAs. In GAs, crossover is the primary method

to create new solutions and we use two crossover operators in the present study: multi-point and uniform crossovers.

Multi-point crossover randomly chooses a pair of previously selected individuals from the mating pool and a number of

crossover points along their chromosomes. Then, this operator exchanges segments of the two chromosomes delimited

by the crossover points. Uniform crossover randomly selects the donor parent for each bit in the offspring.

In GAs, mutation occurs with a low frequency, but mutation is the primary search operator in evolution strategies

and evolutionary programming. In the binary case, mutation consists of flipping one randomly-chosen bit from zero

to one or vice versa. Some theoretical studies support the use of a mutation rate of 1/l, where l is the length of the

chromosome [10], [11]. Although our application may not satisfy the assumptions made in those studies, this choice of

mutation rate has been successful in several practical situations, and we adopt it for our experiments.

B. Training Networks with Evolutionary Algorithms

Training a neural net is an optimization task with the goal of finding a set of weights that minimizes some error

measure. The search space is high dimensional and, depending on the error measure and the input data, it may contain

numerous local optima. Some traditional network training algorithms, such as backpropagation (BP), use some form of



4

gradient search, and may get trapped in local optima. In contrast, EAs do not use any gradient information, and are

likely to avoid getting trapped in a local optimum by sampling simultaneously multiple regions of the space.

A straightforward combination of genetic algorithms and neural networks is to use the EA to search for weights that

make the network perform as desired. The architecture of the network is fixed by the user prior to the experiment. In

this approach, each individual in the GA represents a vector with all the weights of the network.

In the simplest variation of this method, the weights found by the EA are used in the network without any further

refinement [12], [13], [14], [15]. This is particularly useful when the activation function of the neurons is non-differentiable

and traditional gradient-based training algorithms cannot be used.

An alternative is to use backpropagation or other methods to refine the weights represented in each individual [16],

[17]. The motivation of this approach is that GAs quickly identify promising regions of the search space, but they do not

fine-tune parameters very fast. So, EAs are used to find a promising set of initial weights from which a gradient-based

method can quickly reach an optimum. This approach extends the processing time per individual, but sometimes the

overall training time can be reduced because fewer individuals may need to be considered before reaching an acceptable

solution.

EA can also be used to refine weights found by a traditional NN learning algorithm [18]. In general, seeding the initial

population is an effective way to bias the EA toward good solutions.

These approaches are straightforward and have produced good results, but suffer from several problems. First, since

adjacent layers in a network are usually fully connected, the total number of weights is O(n2), where n is the number

of units. Longer individuals usually require larger populations, which in turn result in higher computational costs. For

small networks, the GA can be used to search for good weights efficiently, but this method may not scale up to larger

domains.

Another drawback is the so-called permutations problem [19]. The problem is that by permuting the hidden nodes of

a network, the representation of the weights in the chromosome would change, although the network is functionally the

same. Some permutations may not be suitable for GAs because crossover might easily disrupt favorable combinations of

weights. To ameliorate this problem, Thierens [20] suggested placing incoming and outgoing weights of a hidden node

next to each other. An analysis by Hancock [21] suggested that the permutation problem is not as difficult as it is often

presented, and Thierens [22] presented an encoding that avoids the permutations problem altogether.

The most common approach is to use the EA to find the initial weights and then refine the weights with backpropa-

gation. There are two variations of these hybrid methods, which are inspired by the Lamarckian model of evolution and

the Baldwin effect. In the Lamarckian algorithm, the weights of the trained network are encoded back in the chromo-

somes. While in natural evolution it is impossible to change a genome to reflect acquired or learned characteristics, the

Lamarckian mechanism has demonstrated its usefulness in some EA applications. In a Baldwinian algorithm, the fitness



5

is calculated using a BP-trained network, but the weights modified by BP are not encoded back into the chromosomes.

The Baldwin effect has also been shown useful in EA applications.

Of course, the success of Lamarckian or Baldwinian approaches depends on the problem. In evolving neural networks

the results have been mixed: Ku and Mak [23] show improved performance using a Lamarckian strategy while Gruau

and Whitley [24] obtained equally effective results with a Lamarckian and Baldwinian algorithms. Similarly, in general

function optimization, the results are mixed: Whitley, Gordon and Mathias [25] observed that using the Baldwin effect

was slower but more effective than a Lamarckian approach; Houck, Jones, Kay, and Wilson [26] showed that pure

Lamarckian and Baldwinian approaches were outperformed by updating the chromosomes of only a fraction of the

population (i.e., using a “partial” Lamarckianism); and Julstrom [27] showed examples where using the Baldwin effect

was actually worse than straightforward Darwinian search and the best results were obtained with Lamarckian strategies.

In the present paper, we investigate both Lamarckian and Baldwinian approaches.

C. Feature Selection with Evolutionary Algorithms

Besides searching for weights, EAs may be used to select the features that are input to the NNs. The training examples

may contain features that are irrelevant or redundant, but it is generally unknown a priori which features are relevant.

Avoiding irrelevant and redundant features is desirable not only because they increase the size of the network and the

training time, but also because they may reduce the accuracy of the network.

Selecting a subset of features with EAs is straightforward, using binary-encoded GAs and the so-called wrapper

approach [28]: The chromosome of the individuals contains one bit for each feature, and the value of the bit determines

whether the feature will be used in the classification. The individuals are evaluated by training the networks (that have

a predetermined structure) with the feature subset indicated by the chromosome. The resulting accuracy is used to

calculate the fitness. Since the pioneering work of Siedlecki and Sklanski [29], genetic algorithms have been used for

many feature selection problems using neural networks [30], [31], [32], [33] and other classifiers such as decision trees [34],

k-nearest neighbors [35], [36], rules [37], and Naive Bayes [38], [39].

D. Using EAs to Design the Topology

As mentioned before, the topology of a network is crucial to its performance. If a network has too few nodes and

connections, it may not be able to learn the required concept. On the other hand, if a network has too many nodes and

connections, it may overfit the training data and have poor generalization. Miller, Todd, and Hedge [40] identified two

major approaches to use EAs to design the topology of NNs: use a direct encoding to specify every connection of the

network or evolve an indirect specification of the connectivity.



6

D.1 Direct Encodings

The key idea behind direct encodings is that a neural network may be regarded as a directed graph where each node

represents a neuron and each edge is a connection. A common method of representing directed graphs is with a binary

connectivity matrix: the i, j-th element of the matrix is one if there is an edge between nodes i and j, and zero otherwise.

Binary-encoded GAs appear well suited for direct encoding, because the connectivity matrix can be represented in a GA

simply by concatenating its rows or columns [40], [41]. The algorithm uses the connectivity matrix to build a network

which is then trained, and the performance of the network is used to calculate the fitness. Using this method, Whitley,

Starkweather, and Bogart [42] showed that the GA can find topologies that learn faster than the typical fully-connected

feedforward network. The GA can be explicitly biased to favor smaller or sparsely connected networks, which can be

trained faster. However, since each connection is explicitly coded, the length of the individuals is O(n2) (where n is the

number of neurons), and the algorithm is not scalable to large problems.

Instead of using direct encodings to build a network, it is possible to use direct encodings to prune an excessively

large network to try to improve its generalization. Numerous algorithms have been used to prune neural networks [43].

Pruning begins by training a fully-connected neural network. Most pruning methods delete a single weight at a time

in a greedy fashion, which may result in suboptimal networks. Additionally, many pruning methods fail to account

for interactions between multiple weights. This may be problematic if, for example, a network has two weights that

should be deleted, but deleting only one weight results in a decrease in performance. Greedy methods would not prune

the weights, but an algorithm that considers weight interactions and more than one weight at a time may have better

chances of reducing the size of the network significantly without affecting the classification accuracy. For these reasons,

GAs seem promising for NN pruning.

Genetic algorithms have been used to prune networks with good results [42], [44], [45]. Whitley and Bogart [46]

suggest to retrain the network for a few epochs after pruning. We performed experiments to confirm this idea, but we

found only limited advantages of retraining. It is also possible to prune entire (input and hidden) nodes, but in the

present paper we experiment only with the more common approach of pruning individual weights.

D.2 Indirect Encodings

A simple indirect encoding method is to commit to a particular topology (feedforward, recurrent, etc.) and a particular

learning algorithm, and then use an EA to find the parameter values that complete the network specification. For

example, with a fully-connected feedforward network, the EA may search for the number of layers and the number

of units per layer. Another example would be to code the parameters of a particular learning algorithm, such as the

momentum and the learning rate of backpropagation [41], [47]. By specifying only the parameters for a given topology,

the coding is very compact and well suited for an evolutionary algorithm. However, this method is constrained by the

initial choice of topology and learning algorithm.



7

A more sophisticated approach to indirect representations is to use a grammar to encode rules that govern the

development of a network. Kitano [48] introduced the earliest grammar-based approach. He used a connectivity matrix

to represent the network, but instead of encoding the matrix directly in the chromosome, he used a graph-rewriting

grammar to generate the matrix. The chromosomes contain rules that rewrite scalar matrix elements into 2×2 matrices.

In this grammar, there are 16 terminal symbols that are 2 × 2 binary matrices. There are 16 non-terminal symbols,

and the rules have the form n → m, where n is one of the scalar non-terminals, and m is a 2×2 matrix of non-terminals.

There is an arbitrarily designated start symbol, and the number of rewriting steps is fixed by the user.

Only the 16 right-hand sides of the rules are contained in the chromosome, the left side is implicit in the position

of the rule. To evaluate the fitness of individuals, the rules are decoded and the connectivity matrix is developed by

applying all the rules that match non-terminal symbols. Then, the connectivity matrix is interpreted and the network

is constructed and trained with backpropagation.

Perhaps the major drawback of this approach is that the number of units must be 2i (where i is any non-negative

integer), because after each rewriting step the size of the matrix doubles in each dimension.

Other examples of grammar-based developmental systems are the work of Boers and Kuiper [49] with Lindenmayer

systems, Gruau’s “cellular encoding” method [50], and the system of Nolfi, Elman, and Parisi [51] that simulates cell

growth, migration, and differentiation.

Siddiqi and Lucas [5] compared Kitano’s method against direct encoding and found that, in contrast to Kitano’s

original results, the direct encoding method performed at least as well as the grammar-based encoding. Grönroos [6]

also compared Kitano’s method against a direct encoding and Nolfi et al.’s indirect encodings. Grönroos experimented

with four artificial and four real-world problems. His experiments favored Kitano’s method, but also suggested that

the evolutionary algorithms did not find networks that were more accurate than hand-designed networks. However,

Grönroos did not had the computational resources to do appropriate statistical testing of his results.

E. Experimental Comparisons

As we mentioned in the introduction, only a handful of studies compare different combinations of EAs and NNs on the

same problems. Only a few more compare the performance of the EA against traditional network training algorithms.

Most of the publications introduce an algorithm and present results to demonstrate the feasibility of the new method.

These publications report valuable innovative research, but at some point the new algorithms must be carefully validated

and compared to existing approaches.

Usually, when combinations of EAs and NN are introduced, the algorithms are evaluated informally and there are

almost no follow up studies or independent verification of the results. The usual approach is to evaluate the newly

proposed method on very few data sets—and frequently only on a single one—severely limiting the generality of the

results. Unfortunately, most comparisons are done improperly, either by presenting “convergence graphs” that show



8

the value of some statistic (usually not the classification accuracy) as a function of computational effort (measured as

generations, epochs, etc.) or by presenting a performance metric calculated on the training sets. While there might be

some value in those results, the accuracy of the final network must be evaluated on an independent test set that has not

been considered by the algorithm at any moment during construction or training of the networks.

Since EAs and NNs are stochastic algorithms, multiple experiments should be performed and compared with appro-

priate statistical tests to verify the validity of the comparisons. This may sound obvious, but it is still common practice

to compare results informally using convergence graphs or the results of single experiments.

Schaffer, Whitley, and Eshelman [8] noted that “studies rigorously comparing different approaches are as yet very

rare.” By examining the proceedings of a recent workshop on combinations of EAs and NNs [52] we observed that

comparisons remain very rare. Of nine papers relevant to classification, we found that only three used generally accepted

methods to estimate generalization (either crossvalidation experiments or training/testing partitions adequate for the

particular application). One of these three papers performed experiments on five data sets, another used three data

sets, and the last paper used a single data set of a particular application. Of these three papers, none verified the results

with statistical tests to support their conclusions, although one of the papers presented the variances of the experiments

allowing the reader to perform tests. The remaining papers relevant to classification were mostly proof-of-concept papers

with single runs on single data sets, with no results of accuracy or no experiments at all.

Experimental deficiencies are not exclusive to research on combinations of EA and NNs. Prechelt [53] noted that the

situation was not much better in top neural network journals. Analyzing 190 papers, Prechelt found that one third

did not present a quantitative comparison with an existing method. His survey also found that 29% of new algorithms

were not evaluated on any real problem and that only 8% present results on more than one real-world problem. We

believe that the present paper addresses some of these concerns by using an accepted method to compare eight EA+NN

combinations against hand-designed neural nets on 12 real-world and four synthetic data sets.

III. Methods

This section details the data sets and algorithmic details used in this study as well as the method used to compare

algorithms. We defer details of the fitness functions and the parameters used in each algorithm to the next section.

The data sets used in the experiments are briefly described in Table I. The data sets are available in the UCI

repository [54], except for the last four synthetic data sets. Random21 and Redundant21 are synthetic data sets with 21

features each. The target concept of these data sets is to define whether their first nine features are closer to (0,0,...,0) or

(9,9,...,9) in Euclidean distance. The features were generated uniformly at random in the range [3,6]. All the features in

Random21 are random. The first, fifth, and ninth features are repeated four times each in Redundant21. The accuracy

of neural networks may be degraded if trained with irrelevant or redundant features, and we intend to use these synthetic

data sets to test the robustness of the algorithms. We took the definition of Redundant21 from the feature selection



9

Fig. 1. The POL2 (left) and RCB2 (right) artificial data sets.

Features Neural Network
Domain Cases Class Cont. Disc. Miss Input Output Hidden Epochs
Breast Cancer 699 2 9 – N 9 1 5 20
Credit-Australian 653 2 6 9 Y 46 1 10 35
Credit-German 1000 2 7 13 N 62 1 10 30
Pima Diabetes 768 2 9 – Y∗ 8 1 5 30
Heart-Cleveland 303 2 6 7 N 26 1 5 40
Housing 506 3 12 1 N 13 3 2 70
Ionosphere 351 2 34 – N 34 1 10 40
Iris 150 3 4 – N 4 3 5 80
Kr-vs-kp 3196 2 – 36 N 74 1 15 20
Sonar 208 2 60 – N 60 1 10 60
Wine 178 3 13 – N 13 3 5 15
POL2 2000 2 2 – N 2 1 15 30
RCB2 2000 8 2 – N 2 8 10 25
Random21 2500 2 21 – N 21 1 1 100
Redundant21 2500 2 21 – N 21 1 1 100

TABLE I

Description of the data sets used in the experiments. For each data set, the table shows the number of instances; the

number of classes; the number of continuous and discrete features; whether the data has missing values; the number of

input, hidden, and output units; and the number of epochs of backpropagation used to train the networks.

study by Inza et al. [38].

POL2 and RCB2-8 are the two-dimensional data sets depicted in figure 1. We used these data sets in previous

experiments with oblique decision trees [55]. The concept represented by the POL2 data is a set of four parallel oblique

lines (hence its name), it contains 2000 instances divided into two classes. The “rotated checker board” (RCB2) data

also has 2000 instances, but in this case they are divided into eight classes.

Instances with missing values in Credit-Australian were deleted. Following the usual practice, the missing values in

Pima-Diabetes (denoted with zeroes) were not removed and were treated as if their values were meaningful. The classes

in Housing were obtained by discretizing the attribute “mean value of owner-occupied homes” as follows: class = 1 if



10

log(median value) ≤ 9.84, class = 2 if 9.84 < log(median value) ≤ 10.075, and class = 3 otherwise.

For all experiments, each numeric feature in the data was linearly normalized to the interval [−1, 1]. The discrete

features and the class labels were encoded with the usual 1-in-C coding if there are C > 2 values (one of the C outputs

is set to 1 and the rest to -1). Binary values were encoded as a single -1 or 1 value.

The programs were written in C++ and compiled with g++ version 2.96 with -O2 optimizations. The experiments

were executed on a single processor of a Linux (Red Hat 7.1) workstation with dual 2.4 GHz Intel Xeon processors and

512 Mb of memory. The programs used a Mersenne Twister random number generator.

The experiments used feedforward networks with one hidden layer. All neurons are connected to a “bias” unit with

constant output of 1.0. Unless specified otherwise, the inputs are connected to all the hidden units, which in turn are

connected to all the outputs. In feedforward operation, the units compute their net activation as net =
∑d

i=1 xiwi +w0,

where d is the number of inputs to the neuron, xi is an input, wi is the corresponding weight, and w0 is the weight

corresponding to the “bias” unit. Each unit emits an output according to f(net) = tanh(βnet). Unless specified

otherwise, we set β = 1.0 in all experiments. Some of the experiments used simple backpropagation with momentum

with a learning rate of 0.15 and a momentum term of 0.9. The network sizes and the number of training epochs varied

for each data set and are specified in Table I. These backpropagation and network parameters were taken from a study

by Opitz and Maclin [56]. In each epoch, the examples were presented to the network in a different random order.

The usual method to compare classification algorithms is to perform k-fold crossvalidation experiments to estimate

the accuracy of the algorithms and use t-tests to confirm if the results are significantly different. In crossvalidation,

the data D is divided into k non-overlapping sets, D1, ..., Dk. At each iteration i (from 1 to k), the network is trained

with D\Di and tested on Di. However, it has been shown that comparing algorithms using t-tests on crossvalidation

experiments results in an increased type-I error: The results are incorrectly deemed significantly different more often

than expected given the level of confidence used in the test [57].

To amerliorate this problem, we followed the procedure recommended by Dietterich [57] and Alpaydin [58] and used

5 iterations of 2-fold crossvalidation (5x2cv). In each iteration, the data were randomly divided in halves. One half was

input to the algorithms, and the other half was used to test the final solution. The accuracy results presented in the

next section are the average and standard deviations of the ten tests.

Note that the algorithms further split the half of the data input to them into training/validation sets or use it in

internal crossvalidations experiments to guide the search or to decide when to stop. Presenting the results of these

internal crossvalidations or the accuracy on the validation set as the final result of the algorithms is common, but

incorrect. The final results should always be tested on unseen data. The accuracy results that we present are obtained

by testing the final solutions on the half of the data that has not been considered at all by the algorithms.

Having an outer 5x2 crossvalidation loop allows us to partition the data to do proper comparisons on unseen testing



11

data and also to use the combined F test proposed by Alpaydin [58] that ameliorates the problems of the crossvalidated

t-test and has high power. Let p
(j)
i denote the difference in the accuracy of two classifiers in fold j of the i-th iteration

of 5x2cv, p̄ = (p(1)
i + p

(2)
i )/2 denote the mean, and s2

i = (p(1)
i − p̄)2 + (p(2)

i − p̄)2 the variance, then

f =

∑5
i=1

∑2
j=1

(
p
(j)
i

)2

2
∑5

i=1 s2
i

is approximately F distributed with 10 and 5 degrees of freedom. We rejected the null hypothesis that the two algorithms

have the same error rate with a 0.05 significance level if f > 4.74. All the algorithms used the same training and testing

data in the two folds of the five crossvalidation experiments.

IV. Experiments

We present experiments that correspond to the combinations of EAs and NNs discussed in section II: using EAs to

train neural networks, select feature subsets, and design network topologies.

A. Training Networks with EAs

We trained neural networks with the following methods:

1. Using binary-encoded GAs and real-encoded EAs to search for weights.

2. Using a binary-encoded GA to search for initial weights and refine the weights using backpropagation.

(a) Varying the number of backpropagation epochs (1, 2, and 5 epochs).

(b) Varying the fraction of individuals refined with BP.

(c) Using Baldwinian and Lamarckian evolution models.

The first objective of these experiments is to test whether there is an advantage of using real vs. binary codings in

training neural nets on our selection of data sets. We recognize that the comparison is necessarily incomplete, as we

cannot test the myriad algorithmic variations and operators designed to operate on binary and real values. However,

we present results with algorithms that represent extremes in the sophistication of EAs in use: a simple GA with a

straightforward binary encoding and a state-of-the-art real parameter GA.

The second objective is to test the advantage of hybridizing the EAs using backpropagation to refine the weights.

We varied the number of BP epochs to measure how much local search is required to reach good solutions. It has been

suggested that refining a small fraction of individuals is enough to benefit from the hybridization with local optimizers.

We performed experiments where 5% of the individuals (the usually recommended fraction) are refined by BP and

experiments where the entire population is refined. We also tested whether encoding the trained weights back into the

individuals (Lamarckian evolution) results in more accurate networks than simply using the trained network to assess

the fitness without modifying the chromosomes (Baldwin effect).



12

To avoid overfitting, we follow the usual procedure of splitting the input data into evaluation and validation sets. The

evaluation set with 70% of the items will be used to evaluate the fitness of the individuals. The validation set consists

of the remainding 30% of the data and will be used to estimate the generalization ability of the best result found during

each generation. The output of the GA will be the solution that exhibited the highest accuracy on the validation set.

The results presented in the tables are the averages of the 5x2cv accuracies measured on the test sets that have not been

considered during training.

A.1 Binary and Real Encodings

In the binary-encoded GA, each weight was represented with 16 bits and ranged in [-1, 1]. The population size for

the GAs was set to n = �3√l�, where l is the length of the chromosomes in bits, following the gambler’s ruin model for

population sizing that asserts that the population size required to reach a solution of a particular quality is O(
√

l) [59].

The initial population was initialized uniformly at random. The results reported are from GAs that used uniform

crossover. Extensive testing with single- and multi-point crossovers did not yield significant differences. The mutation

rate was set to 1/l, following theoretical studies [10], [11] that assert that, under some conditions, this is an optimal

setting. Although our problems may not satisfy the assumptions of the analyses, this choice of mutation rate has been

successful in several practical situations. As in all experiments, pairwise tournament selection without replacement was

used to select promising solutions. The entire population is replaced every generation and there is no elitism. The GA

was stopped after a limit of 100 generations and the solution with the highest estimated accuracy on the validation set

was returned.

For the real encoding, we chose the EA described by Deb, Anand, and Joshi [60]. This EA is based on a parent-centric

recombination operator (PCX) and a steady-state elitist replacement method (G3). The parent-centric recombination

means that offspring are likely to be close to the parents, in contrast with other recombination operators where the

offspring are close to the centroid of the parents. The G3 method always selects the best individual to participate as a

parent. Two other parents are selected randomly. After offspring are created, the method replaces two randomly selected

parents with the best two solutions from a combined population formed of the two parents and the newly generated

offspring. We refer to this EA as G3PCX. Deb et al. [60] compared the performance of their system against five real

parameter optimizers: two real-encoded GAs, a correlated self-adaptive evolution strategy, differential evolution, and

the quasi-Newton method. G3PCX consistently reached target solutions using fewer function evaluations than the other

methods, and G3PCX was shown to scale well to increasing problem size. For our experiments, we modified the code

provided by the authors to use a Mersenne Twister random number generator, to allocate memory dynamically, and to

use the termination criteria described below.

For G3PCX, we set the population size to n = �30
√

l�, where l is the number of weights in the network. The algorithm

was stopped after n iterations with no change in the best solution found, or after a limit of 50n function evaluations.



13

Domain Neural Net G3PCX Binary
Breast Cancer 96.39 0.58 98.94 2.35 98.88 0.32

Credit-Australian 82.53 9.49 82.05 2.86 83.28 1.69

Credit-German 70.12 1.39 30.00 1.46 70.94 1.49

Diabetes-Pima 73.30 3.47 75.49 1.3 73.83 2.45

Heart-Cleveland 78.17 3.16 90.42 2.12 87.72 3.42

Housing 64.62 12.76 61.22 4.70 67.94 7.31

Ionosphere 84.77 3.80 64.10 2.04 74.10 1.94

Iris 94.53 2.12 89.73 11.7 88.67 6.09

Kr-vs-kp 74.30 6.47 80.12 4.04 90.14 0.60

Sonar 69.61 3.12 67.40 5.44 73.65 2.55

Wine 95.16 1.76 84.94 11.46 92.47 4.55

POL2 90.72 2.53 87.74 1.65 90.81 1.81

RCB2-8 92.61 0.88 53.96 6.88 96.41 1.41

Random21 91.70 3.76 97.52 0.68 93.29 4.24

Redundant21 91.75 3.95 98.88 0.61 98.52 0.50

Mean Accuracy 83.35 77.50 85.38
Median Time 4.9 8.6 41
Mean Time 10.1 11.8 277

TABLE II

Means and standard deviations of the classification accuracies obtained by a hand-designed neural network, the G3PCX

real-encoded algorithm, and a binary-encoded simple GA. Results that are significantly different (α = 0.05) from the

hand-designed neural network (first column) are highlighted in bold. Times are in CPU seconds.

Since the G3PCX algorithm uses steady-state replacement, the iterations in the G3PCX algorithm do not correspond

to generations in the simple GA, and we calibrated the termination criteria experimentally. The PCX parameters σζ

and ση were both set to 0.2. All other parameters were set to their default values.

In both the binary- and real-encoded GAs, the fitness of each individual was calculated by placing the weights encoded

by the individual into a neural net and calculating the accuracy on the evaluation set (70% of the training data). The

architecture of the neural net for each problem is fixed before the experiments as described in Table I. The network

with the best accuracy in the validation data (30% of the training data) is returned as the result of an experiment. As

explained previously, the results reported are the averages of 5x2cv accuracies measured with previously unseen test

sets.

The results of the binary GA and the real-encoded G3PCX are presented in Table II along with the results of a

hand-designed neural network trained with backpropagation using the number of epochs specified in Table I. Bold

typeface is used to highlight the results that are significantly different from the hand-designed neural network (first

column) according to the combined F test at a 0.05 significance level. The table shows that only very few results of the

EAs are significantly different than backpropagation: The GA found significantly better results in three cases, while the

G3PCX was divided with two better and five worse results than the neural net. In the remainder of the experiments,

we use only the binary-encoded GA.



14

A.2 Refining Weights with Backpropagation

The second training method described in section II-B is to refine the weights encoded in the individuals using back-

propagation. This method has numerous options. The user must decide how many epochs of backpropagation will be

used, how many individuals will undergo refinement, and what to do with the refined weights. There is no guidance on

how to choose these parameters, so we experimented using one, two and five training epochs; we applied BP to 5% and

100% of the population; and we tested both Lamarckian and Baldwinian variations. To remain consistent, we used the

same network architecture and GA parameters as in the previous section.

At the end of each experiment in the Baldwinian model, the best set of weights found by the GA was used to initialize

a final network that was trained using the entire training data and tested on the previously unseen testing data. In the

case of Lamarckian evolution, the weights refined with BP were encoded back in the chromosomes of the individuals,

and therefore the final network was not trained further.

Table III has the results of Baldwinian and Lamarckian experiments on 5% of the population as well as the binary

GA results from Table II to facilitate comparisons. As before, bold denote results that are significantly different from

the hand-designed neural networks and daggers (†) denote results that are significantly different than the simple GA

without BP.

Recall that the binary GA performed significantly better than the hand-designed NN on the Breast Cancer, Kr-vs-kp

and Sonar data sets. Both Baldwinian and Lamarckian methods perform significantly better than the hand-designed

neural net in the same three data sets, and there are only a few other significant differences. In particular, with

Credit-Australian, the Baldwinian method found significantly more accurate networks when one epoch was used, but

the differences were not significantly different with more BP epochs or with Lamarckian evolution. In fact, the results

indicate that additional epochs of BP tend to decrease the accuracy of the networks on the testing data and that

Lamarckian evolution performs slightly worse than the Baldwinian method.

The decrease in accuracy with additional BP epochs is coupled with a slight—but consistent—reduction in the

number of generations until termination. This suggests that BP might have effectively refined the weights of a few

(5%) individuals that quickly dominated the population before allowing sufficient time to explore the search space. One

possibility to avoid this dominance of a few is to refine all the individuals.1

The results of refining all the individuals in the population are presented in Table IV. In these results, the trend of

diminishing accuracy with increased refinement epochs is much less noticeable. With POL2 refining all the population

caused the accuracy to fall ≈ 10%, and in RCB2-8 the accuracy improved noticeably. However, in general the accuracies

1There are, of course, many alternatives to deal with the so-called premature convergence problem. The problem and some alternatives
are described by Goldberg [61]. Effective solutions seek a balance between selection and exploration either by altering the selection method
or the genetic operators used to explore new solutions. To facilitate comparisons with the rest of the experiments of this section, we decided
to change the fraction of individuals refined with BP, which is one of the parameters we are studying, and leave the GA parameters and
operators unchanged.



15

Baldwinian Evolution Lamarckian Evolution
Domain 0 BP 1 BP 2 BP 5 BP 1 BP 2 BP 5 BP
Breast Cancer 98.88 0.32 98.48 0.54 98.91 0.33 99.03 0.43 98.68 0.50 98.74 0.48 99.08 0.48

Credit-Australian 83.28 1.69 84.12 3.14 83.75 1.55 83.32 1.91 81.86 3.13 81.15 1.56 81.11 3.56

Credit-German 70.94 1.49 71.15 1.95 71.98 2.12 70.12 1.43 71.92 1.24 71.67 1.33 69.85 1.93

Diabetes-Pima 73.83 2.45 73.98 3.38 74.92 2.04 74.64 1.95 74.38 1.45 73.31 0.90 73.65 2.03

Heart-Cleveland 87.72 3.42 88.68 1.11 89.25 1.19 89.21 1.99 86.45 2.48 88.82 1.83 87.98 1.75

Housing 67.94 7.31 68.77 2.55 70.91 2.71 69.54 2.56 † 71.50 2.23 69.21 3.27 67.94 3.98

Ionosphere 74.10 1.94 † 68.43 2.87 † 69.43 3.45 † 67.86 4.55 † 65.12 3.06 † 65.88 4.04 † 64.65 4.95

Iris 88.67 6.09 89.47 6.49 † 91.07 4.38 87.20 9.05 89.20 12.74 88.00 13.17 88.13 10.67

Kr-vs-kp 90.14 0.60 91.42 0.88 91.71 1.20 89.66 1.06 † 80.88 2.65 † 79.80 3.52 † 78.29 1.89

Sonar 73.65 2.55 74.44 3.78 74.12 2.15 72.83 3.32 72.40 2.72 73.31 2.96 72.96 4.32

Wine 92.47 4.55 91.91 3.55 90.90 5.45 89.55 4.11 91.69 3.19 92.25 3.27 91.01 3.52

POL2 90.81 1.81 85.28 9.42 86.40 4.13 † 79.33 6.96 85.80 8.94 83.43 6.77 81.87 8.31

RCB2-8 96.41 1.41 † 52.56 12.93 † 52.47 17.42 † 64.99 11.28 † 62.49 9.89 † 63.01 12.32 † 63.11 14.23

Random21 93.29 4.24 93.47 1.48 92.61 1.87 93.88 3.73 94.64 1.71 93.63 1.98 94.04 1.51

Redundant 98.52 0.60 98.22 1.15 97.72 2.18 98.66 0.75 98.68 0.75 97.96 0.93 98.13 1.16

Mean Accuracy 85.38 82.03 82.41 81.99 81.71 81.34 80.79
Median Time 41 77 89 136 101 114 145
Mean Time 277 4132 5963 11329 4138 5944 11328

TABLE III

Means and standard deviations of accuracies obtained by initializing the neural nets with the weights encoded in the

chromosomes and applying backpropagation for 1, 2, and 5 epochs. Results using Baldwinian and Lamarckian variations on

5% of the members of the population are presented. Results that are significantly different (α = 0.05) from the

hand-designed neural network are in bold and daggers (†) indicate results significantly different than the GA without BP

(first column). Times are given in CPU seconds.

are not much different than with refining only 5% of the individuals, and since refining the entire population is much

more costly, this option should probably be avoided.

B. Feature Selection

The next combination of GAs and NNs that we considered is the use of GAs to select a subset of features that will

be used to train the networks, as described in section II-C.

We use a binary-encoded GA, because binary codings are natural for this problem. The chromosomes in the GA had

one bit for each feature. The population was initialized uniformly at random with �3√l� individuals, but a minimum

population size of 20 individuals was enforced. The GA used uniform crossover with probability 1.0 and mutation with

rate 1/l. The networks were trained for the number of epochs indicated in Table I. The algorithm was stopped after the

best solution found did not change in five generations, or until a limit of 50 generations was reached. Across the data

sets we used, the largest number of generations until termination was 15 (averaged over the 5x2cv trials), indicating

that the GAs found good solutions early in their runs.

We are always interested in networks that classify accurately data that were not used in training. In the case of

feature selection, we evaluate the fitness of candidate feature subsets using an estimate of the generalization given by a

single five-fold crossvalidation.

Since the fitness is an estimate of the generalization of the networks, it may seem appropriate to report the best fitness

found by the GA as the result of the algorithm. However, as it has been recently demonstrated [62], [63] this approach

has a risk of overfitting the training data. Instead, we use the best feature subset found by the GA to train a final



16

Baldwinian Evolution Lamarckian Evolution
Domain 0 BP 1 BP 2 BP 5 BP 1 BP 2 BP 5 BP
Breast Cancer 98.88 0.32 98.83 0.45 98.86 0.50 98.60 0.62 98.88 0.49 98.94 0.57 98.86 0.38

Credit-Australian 83.28 1.69 82.02 2.95 81.75 1.60 82.60 1.33 79.88 2.94 80.03 1.60 79.11 2.75

Credit-German 70.94 1.49 68.23 2.15 68.11 1.83 67.88 2.03 68.92 2.34 67.66 1.84 66.58 2.10

Diabetes-Pima 73.83 2.45 73.83 2.45 74.53 1.65 72.92 2.10 73.83 1.57 73.07 3.53 72.63 1.56

Heart-Cleveland 87.72 3.42 88.58 1.27 88.45 1.39 88.32 2.29 86.87 2.06 88.98 1.61 87.66 1.57

Housing 67.94 7.31 68.14 3.23 66.84 3.28 65.26 5.71 65.89 2.97 65.18 4.54 63.32 5.48

Ionosphere 74.10 1.94 73.88 2.15 73.15 2.73 72.89 2.98 74.25 1.62 74.03 2.15 73.77 3.67

Iris 88.67 6.09 91.33 6.20 89.87 4.05 91.07 5.40 92.40 4.85 93.20 3.84 92.00 3.72

Kr-vs-kp 90.14 0.60 89.48 0.60 89.71 1.01 86.46 0.66 72.30 4.05 69.48 2.52 73.12 2.56

Sonar 73.65 2.55 72.50 5.27 72.12 3.96 71.73 4.39 72.40 3.57 71.63 3.80 70.48 5.21

Wine 92.47 4.55 93.60 3.10 92.02 3.71 92.36 3.29 89.55 4.35 87.98 2.56 87.08 5.73

POL2 90.81 1.81 81.88 7.37 75.77 5.46 † 68.69 7.52 † 72.21 16.9 † 76.01 14.2 † 76.69 9.94

RCB2-8 96.41 1.41 89.21 13.23 88.64 8.88 89.54 9.99 97.02 5.8 † 87.67 2.26 90.95 1.24

Random21 93.29 4.24 92.98 3.54 89.74 2.85 86.63 4.76 87.05 3.14 85.23 3.23 86.69 2.32

Redundant 98.52 0.60 89.74 5.28 † 82.91 5.28 † 84.34 9.11 90.15 4.54 † 84.15 7.31 85.11 4.54

Mean Accuracy 85.38 83.62 82.16 81.29 81.44 80.22 80.27
Median Time 41 1099 1325 1869 1172 1519 2144
Mean Time 277 67082 90104 131053 65664 90890 142144

TABLE IV

Means and standard deviations of accuracies obtained by initializing the neural nets with the weights encoded in the

chromosomes and training the networks with backpropagation for 1, 2, and 5 epochs. Results using Baldwinian and

Lamarckian variations on all the members of the population are presented. Results that are significantly different

(α = 0.05) from the hand-designed neural network are in bold and daggers (†) indicate results significantly different than

the GA without BP (first column). Times are given in CPU seconds.

network on the entire training data and test the network on the testing data that has not been used by the algorithm

until this time. Table V shows the mean and standard deviations of the tests. POL2 and RCB2 are not used in the

feature selection experiments, because both of their two features are necessary for a correct classification.

The results indicate that the GA feature selection produced significantly more accurate results than with all the

features in four data sets and significantly worse results in only one case (Wine). In almost all cases, the GA successfully

decreased the dimensionality of the data by selecting approximately half of the original features without significant

decreases in accuracy.

The synthetic Random21 and Redundant21 data sets were included in the tests because they have known irrelevant

and redundant features, so it is interesting to examine in more detail the results with these data. Recall that Random21

has nine relevant and 12 random features. Table VI shows the features selected in each of the 5x2cv folds on the

Random21 data. Only in two cases, the GA missed one of the relevant features (and this resulted in substantially lower

accuracy in those folds), while it selected the irrelevant features very infrequently. Even with all the irrelevant features

in Random21, backpropagation performed well: The results of feature selection are not significantly different than using

all the features.

In Redundant21, features 1, 5, and 9 are repeated four times each. For example, feature 1 also appears in positions

10, 13, 16 and 19. Missing one feature would cause the accuracy to degrade, but selecting a feature more than once

does not cause problems. Table VII shows that in all cases the GA selected all the relevant features. Note that there

is no preference to select feature 1 over feature 10, 13, 16 or 19. As long as one of these features is selected, the target



17

Num. of Features
Domain Accuracy Original Selected
Breast Cancer 96.48 1.38 9 6.3 1.15

Credit-Australian 84.71 2.33 46 23.5 2.75

Credit-German 71.00 3.16 62 29.6 3.80

Diabetes-Pima 75.70 2.48 8 4.5 0.97

Heart-Cleveland 84.72 12.49 26 12.6 2.32

Housing 68.65 2.50 13 8.3 1.94

Ionosphere 87.00 1.82 34 16.2 1.39

Iris 93.60 2.41 4 2.3 0.67

Kr-vs-kp 95.04 1.98 74 35.1 2.84

Sonar 72.98 5.03 60 31.9 5.97

Wine 86.06 10.59 13 8.5 1.58

Random21 96.61 4.71 21 13 1.24

Redundant21 98.65 1.08 21 13.9 1.52

Mean Accuracy 85.44 30.07 15.82
Median Time 1250
Mean Time 3172

TABLE V

Results of feature selection experiments. The table presents the 5x2cv mean accuracy and standard deviation, the number

of original inputs, and the mean and standard deviation of the number of features selected by the GA. Results that are

significantly different (α = 0.05) from the hand-designed neural network are highlighted in bold. Times are given in CPU

seconds.

Features
Selected 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Accuracy

12 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 87.04
12 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 99.52
15 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0 88.48
12 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 99.28
14 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 1 97.44
12 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 1 99.04
12 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 99.04
13 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 99.36
15 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 0 98.48
13 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 98.48

13.9 10 10 10 9 10 10 9 10 10 3 5 7 3 3 5 3 2 3 2 2 4 96.61

TABLE VI

Features selected in each of the 5x2cv folds on the Random21 data, where only the first 9 features are relevant. The last

line presents the average number of features and the number of times each feature was selected and the average accuracy.

concept will be completely specified.

C. Using EAs to Design the Networks

This section presents the results of experiments with four methods to use GAs to design neural networks.



18

Features
Selected 1 2 3 4 5 6 7 8 9 1 5 9 1 5 9 1 5 9 1 5 9 Accuracy

15 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 98.40
13 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 99.20
15 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 99.36
12 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 98.72
14 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 98.56
11 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 99.36
14 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 0 0 98.96
15 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 98.72
14 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 95.76
16 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 99.52
13 7 10 10 10 5 10 10 10 7 3 5 7 7 5 6 6 7 4 2 5 3 98.65

TABLE VII

Features selected in each of the 5x2cv folds on the Redundant21 data. The last line presents the average number of

features and the number of times each feature was selected and the average accuracy.

C.1 Connectivity Matrix

In the first set of network design experiments, we used the GA to search for a connectivity matrix as described in

section II-D. For each data set, we fixed the number of hidden units to those indicated in Table I. The neurons are

numbered consecutively starting with the inputs and followed by the hidden units and outputs. The connectivity matrix

is encoded by concatenating its rows. We allow direct connections between the inputs and the outputs, and therefore

the string length is l = (hidden + outputs) ∗ inputs + hidden ∗ outputs bits. For these longer problems we use multi-

point crossover with probability 1.0 with l/10 crossover points and a mutation rate of 1/l. The populations contained

�3√l� individuals with an enforced minimum of 20 individuals. The GA was terminated after five generations of no

improvement of the best solution or if a limit of 50 generations was reached.

After building a network using the connectivity matrix specified in the chromosomes, the fitness was calculated with

five-fold crossvalidation experiments. In each fold, the network was trained with backpropagation using the number of

epochs specified in Table I. The best connectivity matrix found during the GA run was used to build a final network,

which was trained with the entire training data and tested on the previously unseen test data.

The results of these experiments are labeled Matrix in Table VIII. The experiments show that the accuracy was

significantly lower than the hand-designed network in three artificial data sets (POL2, Random21 and Redundant21)

and higher only in Kr-vs-kp.

C.2 Pruning

For the pruning experiments, the representation of the connectivity matrix and the GA parameters are the same as

in the previous experiment. A fully-connected neural network was trained at the start of each experiment using the

parameters shown in Table I. To calculate the fitness of each individual, a copy of the initial fully-connected network



19

Domain Matrix Pruning Parameters Grammar
Breast Cancer 96.77 1.10 96.31 1.21 96.69 1.13 96.71 1.16

Credit-Australian 84.34 0.87 86.01 1.42 84.12 3.22 76.04 14.39

Credit-German 71.76 2.06 69.70 2.42 71.70 5.75 72.10 1.69

Diabetes-Pima 75.44 1.65 73.88 2.44 75.88 2.16 74.45 1.83

Heart-Cleveland 76.78 7.87 89.50 3.36 65.89 13.55 72.8 12.56

Housing 66.60 2.57 70.47 1.43 73.28 1.42 59.44 5.84

Ionosphere 87.06 2.14 83.66 1.90 85.58 3.08 88.03 1.55

Iris 92.40 2.67 92.40 1.40 91.73 8.26 92.93 3.08

Kr-vs-kp 96.45 1.00 92.44 0.98 98.07 0.95 96.23 1.68

Sonar 71.34 4.09 73.94 3.98 72.59 4.16 70.57 6.44

Wine 90.56 3.14 93.37 2.33 94.04 2.37 94.49 2.72

POL2 68.67 12.02 72.02 7.98 94.03 3.49 68.43 15.75

RCB2-8 79.24 5.42 59.01 12.14 92.01 3.51 75.55 4.29

Random21 71.03 6.43 94.05 3.32 80.08 4.77 95.28 1.52

Redundant21 73.40 9.02 94.86 4.19 72.68 17.05 96.95 1.13

Mean Accuracy 80.12 82.26 83.22 82.4
Median Time 1499 29 2688 4155
Mean Time 3227 73 13423 11246

TABLE VIII

Mean 5x2cv accuracies obtained by different methods of evolving the structure of a neural network. Results that are

significantly different (α = 0.05) from the hand-designed neural network are highlighted in bold. Times are given in CPU

seconds.

was pruned by setting to zero the weights corresponding to entries with zero in the connectivity matrix encoded in the

chromosome. The fitness was the accuracy of the pruned network on the training data. The pruned networks were not

retrained, but additional experiments reported elsewhere show that retraining with 1, 2 or 5 epochs of backpropagation

has little effect on the accuracy [64].

The connectivity matrix encoded in the best individual found by the GA was used to prune the initial fully-connected

network, which was tested on the previously unseen test data. The results in Table VIII show that in most cases pruning

results in networks with an accuracy that is not significantly different than the fully-connected networks. Pruning resulted

in worse results in two cases, and only in one case pruning improved the accuracy.

C.3 Finding Network Parameters

In our next application of GAs to network design, the GA was used to find the number of hidden units, the parameters

for BP, and the range of initial weights as described in section II-D. The length l of each individual was 36 bits. The

learning rate and the coefficient β for the activation function were encoded in five bits each and ranged in [0,1]. The

number of hidden units was also encoded in five bits and could take values in [0,31]. Initial experiments used seven bits

to encode the number of hidden units (allowing up to 127 hidden units). With five bits (and up to 31 hidden units),

we observed a notable reduction in execution time without a degradation in accuracy. This is expected since the largest

hand-designed network for these data sets has 15 hidden units (see Table I). The number of epochs was encoded in six

bits. The upper and lower ranges for the initial weights were encoded in ten bits each and their ranges were [-10,0] and



20

[0,10], respectively.

After extracting the parameters from a chromosome, a network was built, initialized, and trained according to the

parameters. As in previous experiments, the 5-fold crossvalidated accuracy estimate was used as the fitness of the

networks.

The population of the GA contained 25 individuals and was initialized uniformly at random. Various population

sizes ranging from 10 to 100 were tried on selected data sets with no noticeably improvement in accuracy. The GA

used two-point crossover with probability 1.0 and the mutation rate was set at 1/l = 0.04. As in all experiments,

pairwise tournament selection without replacement is used. The GA runs were terminated after the best solution does

not improve for five generations or a limit of 50 generations is reached.

The best parameters found by the GA were used to build and train a final network. The final network was trained

on the entire training data and tested on the previously unseen testing data. As in all the experiments, the results

reported are the averages on the testing data. The accuracy results are labeled Parameters in Table VIII. The results

are significantly different from the hand-designed network in only two cases.

C.4 Graph Rewriting Grammar

We implemented Kitano’s graph rewriting grammar method as described in section II-D. We limited the number of

rewriting steps to 8, resulting in networks with at most 256 units. Since the chromosomes encode four 2 × 2 binary

matrices for each of the 16 rules, the string length is 256 bits. The GAs used populations with 64 individuals, multi-point

crossover with probability 1.0 and l/10 crossover points, and mutation with a rate of 0.004 ≈ 1/l.

After using the grammar encoded in the chromosomes to generate a connectivity matrix, a network was built from the

matrix and trained with backpropagation. As before, the fitness of the each individual was determined by estimating

the accuracy of the network with five-fold crossvalidation. The GA was stopped after five generations of no improvement

or a limit of 50 generations. The best grammar found was used to produce a final network, which was trained on the

entire training set and tested with the unseen test data.

The results labeled Grammar in Table VIII show that this network design method does not result in many significantly

different results. Only in one data set the grammar-based method resulted in a better accuracy than the hand-designed

network, and in two cases the grammar was significantly less accurate.

V. Conclusions

There are numerous combinations of EAs and NNs, but these methods have not been tested systematically and

compared carefully to each other. This paper represents the most comprehensive study to date, presenting a comparison

of eight combinations of EAs and NNs applied to 15 classification problems. We experimented with real- and binary-

encoded EAs to train the networks and we tested the effect of refining weights with backpropagation and Lamarckian



21

and Baldwinian approaches. In addition, we experimented using EAs for feature subset selection and with four methods

to design the structure of the networks.

In a few data sets, we found that some methods perform quite differently than the others. However, most of the time,

the EA and NN combinations that we tried performed equally well and their accuracy was not significantly different

from the accuracy reached by backpropagation. The results also suggest that the methods that use GAs to design the

structure of networks perform slightly worse (but not significantly) than using GAs for training networks.

One conclusion of our study is that simple methods perform well and often better than more complex approaches.

In particular, networks trained with simple backpropagation and simple binary-encoded GAs were competitive with the

most complex methods examined here. Feature subset selection also demonstrated to be very useful. These algorithms

are easy to implement and, because they have fewer parameters than the more sophisticated algorithms, are also easier

to use in practice.

Innovative combinations of EAs and NNs are still being proposed. Evaluations of these new methods should be done

carefully and systematically and should include a variety of data sets and different algorithms.

There are other interesting combinations of GAs and NNs that we did not include in this study, but appear promising

and should be investigated in future work. For example, ensemble methods that combine several NNs are well known to

improve the classification accuracy, and several combinations of EAs and ensembles of NNs have been proposed. Other

interesting combinations use the EAs to evolve the structure and weights of the NN simultaneously.

Acknowledgments

We are grateful to the anonymous reviewers for their comments that helped improve the presentation of the paper.

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence

Livermore National Laboratory under contract No. W-7405-Eng-48.

References

[1] J. Branke, “Evolutionary algorithms in neural network design and training – A review,” in Proceedings of the First Nordic Workshop

on Genetic Algorithms and their Applications, Jarmo T. Alander, Ed., Vaasa, Finland, 1995, pp. 145–163.

[2] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE, vol. 87, no. 9, pp. 1423–1447, 1999.

[3] P. A. Castillo, M. G. Arenas, J. J. Castillo-Valdivieso, J. J. Merelo, A. Prieto, and G. Romero, “Artificial neural networks design using

evolutionary algorithms,” in Proceedings of the Seventh World Conference on Soft Computing, 2002.

[4] S.G. Roberts and M. Turenga, “Evolving neural network structures,” in International Conference on Genetic Algorithms and Neural

Networks, D.W. Pearson, N.C. Steele, and R.F. Albrecht, Eds., New York, 1995, pp. 96–99, Springer-Verlag.

[5] A. A. Siddiqi and S. M. Lucas, “A comparison of matrix rewriting versus direct encoding for evolving neural networks,” in Proceedings

of the 1998 International Conference on Evolutionary Computation, Piscataway, NJ, 1998, pp. 392–397, IEEE Press.

[6] M. A. Grönross, “Evolutionary design of neural networks,” M.S. thesis, University of Turku, Finland, 1998.

[7] E. Cantú-Paz and C. Kamath, “Evolving neural networks to identify bent-double galaxies in the FIRST survey,” Neural Networks, vol.

16, no. 3–4, pp. 507–517, 2003.



22

[8] J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of genetic algorithms and neural networks: A survey of the state of

the art,” in International Workshop on Combinations of Genetic Algorithms and Neural Networks. 1992, pp. 1–37, IEEE Computer

Society Press.

[9] D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, Addison-Wesley, Reading, MA, 1989.

[10] T. Bäck, Evolutionary algorithms in theory and practice, Oxford University Press, New York, 1996.

[11] H. Mühlenbein, “How genetic algorithms really work: I.Mutation and Hillclimbing,” In Männer and Manderick [65], pp. 15–25.

[12] T. P. Caudell and C. P. Dolan, “Parametric connectivity: Training of constrained networks using genetic algorithms,” In Schaffer [66],

pp. 370–374.

[13] D. J. Montana and L. Davis, “Training feedforward neural networks using genetic algorithms,” in Proceedings of the Eleventh Interna-

tional Joint Conference on Artificial Intelligence, San Mateo, CA, 1989, pp. 762–767, Morgan Kaufmann.

[14] D. Whitley and T. Hanson, “Optimizing neural networks using faster, more accurate genetic search,” In Schaffer [66], pp. 391–397.

[15] D. B. Fogel, L. J. Fogel, and V. W. Porto, “Evolving neural networks,” Biological Cybernetics, vol. 63, pp. 487–493, 1990.

[16] H. Kitano, “Empirical studies on the speed of convergence of neural network training using genetic algorithms,” Proceedings of the

Eighth National Conference on Artificial Intelligence, pp. 789–795, 1990.

[17] A. Skinner and J. Q. Broughton, “Neural networks in computational material science: training algorithms,” Modelling and Simulation

in Material Science and Enginnering, vol. 3, pp. 371–390, 1995.

[18] N. Kadaba and K. E. Nygard, “Improving the performance of genetic algorithms in automated discovery of parameters,” in Machine

Learning: Proceedings of the Seventh International Conference, B. Porter and R. Mooney, Eds., San Mateo, CA, 1990, pp. 140–148,

Morgan Kaufmann.

[19] N. J. Radcliffe, Genetic neural networks on MIMD computers, Unpublished doctoral dissertation, University of Edinburgh, Scotland,

1990.

[20] D. Thierens, J. Suykens, J. Vandewalle, and B. De Moor, “Genetic weight optimization of a feedforward neural network controller,” in

Proceedings of the Conference on Neural Nets and Genetic Algorithms. 1991, pp. 658–663, Springer Verlag.

[21] P. J. B. Hancock, “Recombination operators for the design of neural nets by genetic algorithm,” In Männer and Manderick [65], pp.

441–450.

[22] D. Thierens, Analysis and design of genetic algorithms, Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 1995.

[23] K. W. C. Ku and M. W. Mak, “Exploring the effects of Lamarckian and Baldwinian learning in evolving recurrent neural networks,” in

Proceedings of 1997 IEEE International Conference on Evolutionary Computation, Piscataway, NJ, 1997, pp. 617–622, IEEE.

[24] F. Gruau and D. Whitley, “Adding learning to the cellular development of neural networks: Evolution and the baldwin effect,”

Evolutionary computation, vol. 1, no. 3, pp. 213–233, 1993.

[25] D. Whitley, V. S. Gordon, and K. Mathias, “Lamarckian evolution, the Baldwin effect and function optimization,” in Parallel Problem

Solving fron Nature, PPSN III, Y. Davidor, H.-P. Schwefel, and R. Männer, Eds., Berlin, 1994, pp. 6–15, Springer-Verlag.

[26] C. R. Houck, J. A. Joines, M. G. Kay, and J. R. Wilson, “Empirical investigation of the benefits of partial lamarkianism,” Evolutionary

Computation, vol. 5, no. 1, pp. 31–60, 1997.

[27] B. Julstrom, “Comparing darwinian, baldwinian, and lamarckian search in a genetic algorithm for the 4-cycle problem,” in Late Breaking

Papers at the 1999 Genetic and Evolutionary Computation Conference (GECCO’99), Scott Brave and Annie S. Wu, Eds., 1999, pp.

134–138.

[28] R. Kohavi and G. John, “Wrappers for feature subset selection,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, 1997.

[29] W. Siedlecki and J. Sklansky, “A note on genetic algorithms for large-scale feature selection,” Pattern Recognition Letters, vol. 10, pp.

335–347, 1989.

[30] F. Z. Brill, D. E. Brown, and W. N. Martin, “Genetic algorithms for feature selection for counterpropagation networks,” Tech. Rep.

No. IPC-TR-90-004, University of Virginia, Institute of Parallel Computation, Charlottesville, 1990.

[31] T. W. Brotherton and P. K. Simpson, “Dynamic feature set training of neural nets for classification,” in Evolutionary Programming

IV, J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, Eds., Cambridge, MA, 1995, pp. 83–94, MIT Press.



23

[32] J. Yang and V. Honavar, “Feature subset selection using a genetic algorithm,” IEEE Intelligent Systems, vol. 13, pp. 44–49, 1998.

[33] M. Ozdemir, M. J. Embrechts, F. Arciniegas, C. M. Breneman, L. Lockwood, and K. P. Bennett, “Feature selection for in-silico drug

design using genetic algorithms and neural networks,” in IEEE Mountain Workshop on Soft Computing in Industrial Applications.

2001, pp. 53–57, IEEE Press.

[34] J. Bala, K. De Jong, J. Huang, H. Vafaie, and H. Wechsler, “Using learning to facilitate the evolution of features for recognizing visual

concepts,” Evolutionary Computation, vol. 4, no. 3, pp. 297–311, 1996.

[35] J. D. Kelly and L. Davis, “Hybridizing the genetic algorithm and the K nearest neighbors classification algorithm,” in Proceedings of

the Fourth International Conference on Genetic Algorithms, R. K. Belew and L. B. Booker, Eds., San Mateo, CA, 1991, pp. 377–383,

Morgan Kaufmann.

[36] W. F. Punch, E. D. Goodman, M. Pei, L. Chia-Shun, P. Hovland, and R. Enbody, “Further research on feature selection and classification

using genetic algorithms,” in Proceedings of the Fifth International Conference on Genetic Algorithms, S. Forrest, Ed., San Mateo, CA,

1993, pp. 557–564, Morgan Kaufmann.

[37] H. Vafaie and K. A. De Jong, “Robust feature selection algorithms,” in Proceedings of the International Conference on Tools with

Artificial Intelligence. 1993, pp. 356–364, IEEE Computer Society Press.

[38] I. Inza, P. Larrañaga, R. Etxeberria, and B. Sierra, “Feature subset selection by Bayesian networks based optimization,” Artificial

Intelligence, vol. 123, no. 1-2, pp. 157–184, 1999.

[39] E. Cantú-Paz, “Feature subset selection by estimation of distribution algorithms,” in GECCO 2002: Proceedings of the Genetic

and Evolutionary Computation Conference, W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,

V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, Eds., San Francisco,

CA, 2002, pp. 303–310, Morgan Kaufmann Publishers.

[40] G. F. Miller, P. M. Todd, and S. U. Hegde, “Designing neural networks using genetic algorithms,” In Schaffer [66], pp. 379–384.

[41] R. Belew, J. McInerney, and N. Schraudolph, “Evolving networks: Using the genetic algorithm with connectionist learning,” in

Proceedings of the Second Artificial Life Conference, New York, NY, 1991, pp. 511–547, Addison-Wesley.

[42] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and neural networks: Optimizing connections and connectivity,”

Parallel Computing, vol. 14, pp. 347–361, 1990.

[43] R. Reed, “Pruning algorithms—a survey,” IEEE Transactions on Neural Networks, vol. 4, no. 5, pp. 740–747, 1993.

[44] P. J. B. Hancock, “Pruning neural networks by genetic algorithm,” in Proceedings of the 1992 International Conference on Artificial

Neural Networks, I. Aleksander and J. Taylor, Eds., Amsterdam, Netherlands, 1992, vol. 2, pp. 991–994, Elsevier Science.

[45] B. LeBaron, “An evolutionary bootstrap approach to neural network pruning and generalization,” unpublished working paper, 1997.

[46] D. Whitley and C. Bogart, “The evolution of connectivity: Pruning neural networks using genetic algorithms,” Tech. Rep. CS-89-113,

Colorado State University, Department of Computer Science, Fort Collins, 1989.

[47] S. J. Marshall and R. F. Harrison, “Optimization and training of feedforward neural networks by genetic algorithms,” in Proceedings

on the Second International Conference on Artifical Neural Networks and Genetic Algorithms. 1991, pp. 39–43, Springer Verlag.

[48] H. Kitano, “Designing neural networks using genetic algorithms with graph generation system,” Complex Systems, vol. 4, no. 4, pp.

461–476, 1990.

[49] J. W. Boers and H. Kuiper, “Biological metaphors and the design of modular artificial neural networks,” M.S. thesis, Leiden University,

The Netherlands, 1992.

[50] F. Gruau, “Genetic synthesis of boolean neural networks with a cell rewritting developmental process,” in Proceedings of the International

Workshop on Combinations of Genetic Algorithms and Neural Networks, D. Whitley and J. D. Schaffer, Eds., Los Alamitos, CA, 1992,

pp. 55–74, IEEE Computer Society Press.

[51] S. Nolfi, J. L. Elman, and D. Parisi, “Learning and evolution in neural networks,” Adaptive Behavior, vol. 3, no. 1, pp. 5–28, 1994.

[52] X. Yao, Ed., Proceedings of the First IEEE Symposium on Combinations of Evolutionary Algorithms and Neural Networks, IEEE

Press, 2000.



24

[53] L. Prechelt, “A quantitative study of experimental evaluations of neural network learning algorithms: current research practice,” Neural

Networks, vol. 9, no. 3, pp. 457–462, 1996.

[54] C.L. Blake and C.J. Merz, “UCI repository of machine learning databases,” 1998.

[55] E. Cantú-Paz and C. Kamath, “Using evolutionary algorithms to induce oblique decision trees,” in Proceedings of the Genetic and

Evolutionary Computation Conference 2000, D. Whitley, D. E. Goldberg, E. Cantú-Paz, L. Spector, L. Parmee, and H.-G. Beyer, Eds.,

San Francisco, CA, 2000, pp. 1053–1060, Morgan Kaufmann Publishers.

[56] D. Opitz and R. Maclin, “Popular ensemble methods: an empirical study,” Journal of Artificial Intelligence Research, vol. 11, pp.

169–198, 1999.

[57] T. G. Dietterich, “Approximate statistical tests for comparing supervised classification learning algorithms,” Neural Computation, vol.

10, no. 7, pp. 1895–1924, 1998.

[58] E. Alpaydin, “Combined 5×2cv F test for comparing supervised classification algorithms,” Neural Computation, vol. 11, pp. 1885–1892,

1999.

[59] G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller, “The gambler’s ruin problem, genetic algorithms, and the sizing of

populations,” Evolutionary Computation, vol. 7, no. 3, pp. 231–253, 1999.

[60] K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolutionary algorithm for real-parameter optimization,” Evolutionary

Computation, vol. 10, no. 4, pp. 371–395, 2002.

[61] D. E. Goldberg, “The hurdle, and the sweet spot: Genetic algorithms as a computational model of innovation,” Proceedings of

International Workshop on Soft Computing in Industry 1999, p. 223, 1999.

[62] J. Reunanen, “Overfitting in making comparisons between variable selection methods,” Journal of Machine Learning Research, vol. 3,

pp. 1371–1382, 2003.

[63] C. Ambroise and G. J. McLachlan, “Selection bias in gene extraction on the basis of microarray gene-expression data,” Proceedings of

the National Academy of Sciences, vol. 99, no. 10, pp. 6562–6566, 2002.

[64] E. Cantú-Paz, “Pruning neural networks with distribution estimation algorithms,” in Genetic and Evolutionary Computation Conference

– GECCO-2003, E. Cantú-Paz et al., Ed., Berlin, 2003, pp. 790–800, Springer-Verlag.

[65] R. Männer and B. Manderick, Eds., Parallel Problem Solving from Nature, 2, Amsterdam, 1992. Elsevier Science.

[66] J. D. Schaffer, Ed., Proceedings of the Third International Conference on Genetic Algorithms, San Mateo, CA, 1989. Morgan Kaufmann.


